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Homework 1

START HERE: Instructions

• The homework is due at 10:30am on October 2, 2013. Anything that is received after that time will not
be considered.

• Answers to everything but the coding question will be submitted electronically (e.g. as a PDF or
handwritten and scanned). We’ll give exact instructions on the email list soon; in the meantime, make
sure you prepare the answers to each question separately.

• Please follow the instruction for code submission in problem 4 correctly.
• The handout for questions 3 and 4 is at http://alex.smola.org/teaching/cmu2013-10-701x/
assignments/assignment_1_handout.tar.

• Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

1 Probability Review [Ahmed; 20pts]

1.1 Why just 2 variables ? Let’s go for 3 [6 pts]

Let A,B and C be three discrete random variables, use Bayes rule to show:

1. Conditional Bayes rule: P (A|B,C) = P (A,B|C)
P (B|C) .

2. Conditional marginalization: P (A|C) =
∑

B P (A,B|C).

3. Chain rule: P (A|C) =
∑

B P (A|B,C)P (B|C).

1.2 Evaluating Test Results [8 pts]

A movie recommendation website is adopting a new recommendation algorithm (A2). Before total adop-
tion, the developers conduct an A/B test where the old algorithm (A1) is used for some randomly chosen
transactions for the sake of comparison. A successful transaction is a one where one of the recommended
movies is clicked on. Table 1 shows the results of the test.

A1 A2
# successful 6000 2150
# failed 1700 500

Table 1: A/B Test Results

• If a transaction succeeds, what is the probability that it has been handled by A2?

• Do you recommend using A2 instead of A1? Why?

• A test engineer claims that if a transaction succeeds with A1, there is 70% chance it will succeed with
A2. Show that this claim cannot be true. (Assume that errors in estimating probabilities from test
results are negligible.)
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Please justify your answers with probabilistic arguments and show your calculations.

1.3 Monty Hall Problem [6pts]

In a game show, you are faced with three doors. Behind one door is a car; behind the others, goats. The
door to keep the car behind is chosen uniformly at random. You pick a door and the host, who knows
what’s behind the doors, opens another door which has a goat. (If you pick the door with the car the host
will choose one of the other doors with equal probabilities). You are then given the opportunity to stick
with the door you picked or switch to the other closed door.

At first glance, it seems that both options are equally likely to win, since the door to keep the car behind
was chosen uniformly at random. We will show that switching actually doubles your chance to win (well,
assuming you prefer a car over a goat).

Let carX , chooseX and openX denote that the car is behind door X , that you choose door X and that
the host opens doorX respectively. Assume, without loss of generality, that you choose door 1 and the host
opens door 2. Use conditional Bayes rule to show that

P (car3|choose1, open2)
P (car1|choose1, open2)

= 2

[Hint: This looks like the Bayes classification rule, but since we don’t know the choice strategy, you will
want to keep expanding by conditioning on choose1.]

2 Regression [Leila; 20pts]

This question is meant to refresh or improve your knowledge of Linear Regression, Ridge Regression, MLE
and MAP estimation.

2.1 Linear Regression [10pts]

Consider a linear model of the form:

y = Xβ + ε (1)

Where y is an N × 1 vector of observed output, X is an N × p matrix of covariates of interest, β is the
p× 1 vector of parameters and ε is an N × 1 vector of noise. The noise terms εi are sampled from N (0, σ2).

Finding the solution for this problem is done by minimizing the sum of squares:

argmin
β
‖y −Xβ‖22 (2)

Which can also be written as:

argmin
β

(y −Xβ)>(y −Xβ) (3)

1. We will being by showing that the MLE solution to this problem is the same as the least squares
solution. First, write the likelihood of the data, i.e. P (y|β).
Hint: The yis are IID, so P (y|β) =

∏
i P (yi|β)
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2. To find the maximum likelihood solution, we can find the solution that maximizes the log of the
likelihood function. Why can we do this step? Show that this problem becomes the same as solving
equation (3).

3. Find the value of β that maximizes the log likelihood.

Hint: You can use this link to help you with the calculus: http://www.cs.nyu.edu/˜roweis/
notes/matrixid.pdf. Remember, we are optimizing with respect to β.

2.2 Ridge Regression [10pts]

In order to prevent an overfit of the data, we can add an L2 penalty on the magnitude of the parameters that
we are learning, to prevent them from growing arbitrarily. The Ridge Regression problem is formulated as:

argmin
β
‖y −Xβ‖22 + λ‖β‖22 (4)

where λ > 0 is the regularization parameter.

1. Find the Ridge solution.

2. Now we will think about the problem in another way. Let β ∼ N (0, λ−1Ip) be a prior on the parameter
vector β. Ip is an identity matrix of size p. We will now find the maximum a posteriori estimate
(MAP) of β. This is achieved by finding the mode of the posterior distribution of β. For simplicity,
take σ2 = 1.

Write the posterior distribution for β. Show that finding the MAP estimate is the same as solving
equation (4).

3. Think of two potential problems with your solution for part 2.1. How does Ridge Regression fix them?

3 Classification [Dougal; 20 pts]

One of the most important aspects of a classifier is the type of functions that it can learn. A typical clas-
sifier will partition the input space into regions which are assigned positive values and regions which are
assigned negative values; we call the boundary between those regions the decision boundary. For exam-
ple, here is the decision boundary for a linear classifier on a trivial two-dimensional dataset, where blue
diamonds represent one class and red circles the other:
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3.1 Drawing decision boundaries [8 pts]

For both of the two-dimensional datasets below, sketch a decision boundary that each of the following
classifiers might come up with and briefly describe the important features of the boundary: what made
it choose that boundary, how good of a classifier it is, and anything else noteworthy. (We’re not looking
for a super-precise drawing here as long as you have it approximately right and mention any important
aspects of why it looks that way.) Classifiers to use: (a) logistic regression or perceptron (say which one
you chose), (b) Gaussian Naive Bayes (with separate variances as in 4.3), (c) 1-nearest-neighbor, and (d) 10-
nearest-neighbor. Each dataset contains 200 total points, 100 from each of the two well-separated clusters;
however, a few labels have been flipped due to noisy observation. Note that we’re talking about applying
each classifier to the raw features plotted here as Cartesian coordinates, not any nonlinear transformations
such as operating in polar coordinates.

The images are available in the handout for this assignment, named q3-1.png and q3-2.png, for you
to draw on more than once.

3.2 Defeating classifiers [12 pts]

Your friend just heard about this whole “machine learning” thing and read a few Wikipedia pages. They
ask you, “Isn’t this whole problem solved? Just use one of these easy classifiers for everything!” Rather than
even bringing up that there’s more to machine learning than classification of real-valued vectors, concerns
about scalability, or anything else, you decide to show them wrong in style: by coming up with a “nice”
dataset that their suggested classifier will completely fail on.

Draw and briefly describe three two-dimensional datasets with an obvious (to a human) decision bound-
ary on which each of the following classifiers will do no better than chance. For our purposes here, a dataset
means n ≥ 10 points, with about half of them positive and half negative, and a clear way to make a sim-
ilar dataset with any larger n; the classifier should get no more than approximately 50% accuracy for any
n. (Somewhere around 51% accuracy for large n is fine, even if the improvement over chance is consis-
tent rather than being due to random variation; 60% is not.) Classifiers to defeat: (a) logistic regression or
perceptron, (b) Gaussian Naive Bayes (with separate variances as before), and (c) 1-nearest neighbor.

Hint: We showed in class that as the number of i.i.d. samples from a distribution increases to infinity,
the error rate of the 1-NN classifier becomes no worse than twice that of the best possible classifier. That
said, part (c) is still possible.
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4 Coding Competition [Carlton; 40 pts + 5 Bonus]

This is a coding question. In this question you will implement the k-Nearest Neighbor and Naive Bayes
algorithms in Octave. Octave is a free scientific programming language, with syntax (almost) identical
to that of Matlab. Installation instructions can be found on the Octave website as linked above. If you’ve
never used Octave or Matlab before, you may wish to check out this tutorial or this one.

For each sub question you will be given a single function signature, and asked to write a single Octave
function which satisfies the signature.

This problem is automatically graded using the CMU Autolab system. The code which you write will
be executed remotely against a suite of tests, and the results used to automatically assign you a grade. In
order for your code to execute correctly on our servers you should avoid using libraries beyond the basic
octave libraries.

The Autolab interface for this course is at https://autolab.cs.cmu.edu/10701-f13. You can
sign in using your andrew credentials. You should make sure to edit your account information and choose
a nickname/handle. This handle will be used to display your results for the challenge question on the class
leaderboard.

• Data All questions will use the following datastructures: XTrain ∈ Rn×f is a matrix of training data,
where each row is a training point, and each column is a feature. XTest ∈ Rm×f is a matrix of test
data, where each row is a test point, and each column is a feature. yTrain ∈ {1, ..., c}n×1 is a vector of
training labels. yTest ∈ {1, ..., c}m×1 is a (hidden) vector of test labels.

• Submission Instructions We have provided you with a single folder containing each of the functions
you need to complete. Do not modify the structure of this directory or rename these files. Complete each
of these functions, then compress this directory as a tar file and submit to autolab online. You may
submit as many times as you like (up to the due date).

4.1 Logspace Arithmetic

When working with very small and very large numbers it is useful to work in logspace to avoid numerical
precision issues. In logspace we keep track of the logs of numbers, instead of the numbers themselves.
So in logspace e2 is represented as 2, and e3 is represented as 3. The challenge is to add and multiply
these numbers while remaining in logspace. Note that if we exponentiate our numbers at any point in the
calculation it complete defeats the purpose of working in log space. Hint: Alex has an excellent post on his
blog about this topic:

1. Logspace Multiplication [5 pts]
Complete the function logProd(x) which takes as input a vector of numbers in logspace, and returns
the product of these numbers in logspace. E.g. logProd(x) = log(

∏
i exp(xi)).

2. Logspace Addition [5 pts]
Complete the function logSum(x) which takes as input a vector of numbers in logspace, and returns
the sum of these numbers in logspace. E.g. logSum(x) = log(

∑
i exp(xi)).

4.2 k Nearest Neighbor Classification

In this question you will implement the k Nearest Neighbor Classification algorithm. You can (and should)
test your implementation locally using the XTrain and yTrain data provided. This is a real dataset called Iris
from the UCI machine learning repository
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1. k Nearest Neighbor [5 pts]
Complete the function knn(XTrain,XTest, k) which returns a m × k matrix D, where Di,j is the
index of the jth nearest neighbor in XTrain of the ith row of XTest.

2. kNN Classification [5 pts]
Complete the function nearestNeighborClassify(XTrain,XTest, yTrain, k) which returns a m × 1
vector c of predicted class values, where ci is the predicted class for the ith row of XTrain.

4.3 Naive Bayes

In this question you will implement the Gaussian Naive Bayes Classification algorithm. As a reminder, in
the Naive Bayes algorithm we calculate p(c|f) = p(f |c)p(c) = p(c)

∏
i p(fi|c). In Gaussian Naive Bayes we

learn a one-dimensional Gaussian for each feature in each class, i.e. p(fi|c) = N(fi;µi,c, σ
2
i,c), where µi,c is

the mean of feature fi for those instances in class c, and σ2
i,c is the variance of feature fi for instances in class

c. Once again you should test your implementation locally using the XTrain and yTrain data provided.

1. Prior [5 pts]
Complete the function prior(yTrain) which returns a c× 1 vector y, where yi is the prior probability
of class i.

2. Likelihood [5 pts]
Complete the function likelihood(XTrain, yTrain) which returns [M,V ]. M is anm×cmatrix where
Mi,j is the conditional mean of feature i given class j. V is anm×cmatrix where Vi,j is the conditional
variance of feature i given class j.

3. Naive Bayes Classifier [5 pts]
Complete the function naiveBayesClassify(XTrain,XTest, yTrain) which returns a m× 1 vector c
of predicted class values, where ci is the predicted class for the ith row of XTrain.

4.4 CHALLENGE: Non-Euclidean Distance [5 pts + 5 bonus]

This is a challenge question, and is much, much more difficult than previous questions. Furthermore this
question is a Competition! There is a class leaderboard for this question on the autolab website, where
students are identified by their chosen nickname/handle. Bonus points will be awarded to students who
have top 10 classification accuracy on the class leaderboard.

In this question you will design a custom distance metric for use with the k Nearest Neighbor algorithm.
As the name suggests, the k Nearest Neighbor algorithm requires us to determine the k closest points in

the training set for each point in the test set. However, which points are closest depends on which notion
of distance we use.

Your task is to design a custom distance metric which gives good classification accuracy when used with
the kNN classification algorithm on a new dataset. You are given two data files: XTrainChallenge.mat
and yTrainChallenge.mat. Complete the function myDist(XTrain,XTest) which returns an m × n
matrix D, where Di,j is the distance between the ith element of XTest and the j’th element of XTrain. We
will use your distance function and the k nearest neighbor algorithm (with k = 5) to classify our hidden
test set.

HINTS: Searching on google for “distance metrics” will return a dizzying array of different approaches,
each best suited to slightly different data. There are the basic distance metrics L1, L2, hamming etc. There
are psuedometrics such as KL divergence. There are approaches which attempt to align the data such as
dynamic time warping. There are approaches which first transform the domain (Laplace Transform, Fourier
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Transform, Cosine Transform) then apply a basic distance metric. I would strongly suggest you begin by
plotting the data (using plot(XTrain(1,:)) ) to get a feel for what it looks like, then consider what sort
of data it might be, and what distance metrics suit this type of data.

Furthermore this is real data, and real data is dirty! You may want to consider normalizing the data
prior to computing distances via centering etc.
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